On some improperly posed problems for the Chaplygin equation
نویسندگان
چکیده
منابع مشابه
A Mollification Framework for Improperly Posed Problems
1. Introduction Various authors have explored the role of molliication in the solution of improperly posed problems such as numerical diierentiation and the numerical solution of rst kind integral equations. For example, Murio 13], exploiting earlier suggestions of Manselli and Miller 11] as well as Vasin 16], has shown how molliied numerical diierentiators can be constructed for the diierentia...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Some ‘complexity’ issues for ill-posed problems
A ‘correct’ interpretation of the computational complexity of an ill-posed problem is formulated as a cost/effectiveness balance for the use of available data to obtain adequate solutions for an application. This composition with an application, is seen as the real problem, leading to the conclusion that some apparently ill-posed problems are, in context, really well-posed with a reasonable ass...
متن کاملThe Finite Element Method in a Family of Improperly Posed Problems
The numerical solution of the Cauchy problem for elliptic equations is considered. We reformulate the original problem as a variational inequality problem, which we solve using the finite element method. Moreover, we prove the convergence of the approximate solution. Let <$> be a bounded open set in the space R" and d6^ be the boundary of fy. Then ßr = ty X (0, T) is a bounded open set in Rn+I....
متن کاملOptimal Filtering ' for some ill - posed problems 1
We describe an approach to a class of ill-posed problems in which the determination of a ``lter' for obtaining approximate solutions is obtained by means of an optimization process. In Hilbert space settings a fairly explicit computation may be possible and this is presented. It is noted that, under certain conditions the resulting lter is, indeed, optimal in the sense of realizing a minimal un...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1967
ISSN: 0022-247X
DOI: 10.1016/0022-247x(67)90021-2